Ynpasngwuwaa nporpavMa gnad MUKpoOKomnblTepa SX-28 Ana 3KCMNEepPUMEHTOB C
UMNY/IbCHBIM pPa3psaoMm.

Author: Oleg Baskakov
PRODUCING OF THE DISCHARGE PULSES AND PULSES FOR AD COMBATA.
For every discharge palse two pulses for_ AD combata are produced,
First_at” the same time when_discharge pulse and second one is shifted.
Useful gulse is a second pulse. But because there is a noise pulse
ime of the begining of discharge which causes acidental runing of AD combata
we force this pulse of noiSe by another pulse. These false data .
counting by AD combata will be” removed by_the C++ grogram which will processed
data. It 15 much more easy way than strugle against nois pulses.

======= Assembler directives ======== .
uses: SX2B8AC, 2 pages of program_mem0r¥, 8_banks of RAM, high speed osc.
Bgsratlngxln turbo mgge, with 8-level stack & extended option reg.

ICE 28L, 0SCXTM .
DEVICE turbo,stackx_optionx
ID 'SX_Disch' ;program ID label
. _._.__FREQ___ 50000006
" RESET resEE_EHEFi ;set reset/boot address. Input point of the program.
. kkkkkkkkkkkkkkkxFTxkxx
! SCAN equ rb.7 ; Input, scan signal. High level for the forward scan,
. ; low level for the back scan. o
th DisPulse equ rb.6 ; Output, to fire a discharge pulse. These pulses occur after dividing of
e
; frequency of_HeNe laser and expanded in time. .
int HeNet, equ rb.5 ; Input, HeNe laser. This pin 1is used for the detection of the edge
interruption.
ADPBlse equ rb.4 Output, pulses for AD combata shifted in time with respect to the

* discharge pulses. i]]
UsedScan equ rb.2 ; Output, "SCAN signal to AD. It is needed for the sinchronization of the
; performance of AD and Sx-chip.
; Now 1t 1s a trigger for AD combata and signal to handle PC program.
; It_is used instead of SCAN line because from on this pin a much less
. ;, pulse noise than on SCAN pin. . . .
%sedScan output is not used because after 25.10.01 something happened with electronics and SX chip could
o
; drive AD with this signal. This_signal was replaced by scan signal in the electic curcits.
ADready equ rb.o ; Input, walting for the start of AD. . .
cycles equ -120 H negat;ve numbér, which determine the time in SX cycles between next
; RTCC interuption.

S5~-

’

or 8
digider ds 1 ; the DisPulses occur with a 1:divider ratig of HeNe frquency.
ShiftCount ds 1 ; number of the HeNe pulses to be skipped after beginning of” the forward
scan
1 . ; to fire the first discharge pulse. It is a ring counter which takes a
value in

. ; the range 0 < ShCount_< divider-1.
SkipCount ds 1 ; number of the HeNe pulses between two_next discharge pulses.
; It is a ring counter which takes a value in the range 0 < ShCount <

divider-1.
dis ds 1 ; counter responsible for the width of the discharge pulse.

Diswidth ds 1 ; width of the dlscharge pulse. .
£ tﬁdEI ds 1 ; counter responsible for the delay of the AD pulse relative to the start
o e

; discharge pulse.

ADDelay ds 1 H dela¥ of the AD pulse. .

CADw s 1 ; counter responsible for the width of the AD pulse.

ADWidth ds 1 ; width of the AD pulse. .

ADpulsewas ds 1 ; flag which determines either or not the AD pulse was at the current

discharge cycle.

work1 ds 1
IsNoisePulse ds 1 ; =1 if there_is a first, "noise" pulse for AD combata.
OneTwoPulses ds 1 ; =1 - two pulses, =0 - one pulse (without "noise" pulse).

—========== TIMER INTERRUPTION =========== i i
org . . . ; It must_always start at address of the interruption,

; Thlsbroutlne 1XDEeipon51ble for the pulse widths and for the startlng of the AD shifted pulses.

sn ulse ; e r

; =0 if it was not yet.

; 1s %hire AD pulse now ? AD pulse can "noise" o
; useful.
jm :AD_pulse_width’ ; Yes. AD pulse exists. Go_to manage the pulse widthes.
sn ADpulsewas. O ; Was AD pulse already earlier ?
jmp :D1s_pulse_width ; Yes. So_let us work”with discharge pulse.
decsz CDel ; No. AD pulse is not_yet started.
] . .5 So, we must make dela¥ of the AD start. .
jmp :Dis_pulse_width ; It is not time to start_ AD pulse. So let us continue
; to work with dlscharge pulse.
seEB ﬁBPu%se 0 ; Is it time to start AD.
se ulsewas.
AD ij i dth :Dgs_pulse_width ; OK with AD start. Go to discharge pulse.
:AD_pulse_wi . L .
Eest IsNglsePulse 1 ; 1s it "noise" pulse ?
z :not_noise_pulse
%lrb ADPulse —P ; stop "noise" pulse.
clr IsNoisePulse .
t]mp, 1 :Dis_pulse_width ; Go to verify a discharge pulse.
:not_noise_pulse . .
decsz P CéDw 1 'dtﬁ Ilet time to stop AD pulse ?
m :Dis_pulse_wi ; No.
) 2%) ADPUTRE o ; Yes.
:Dis_pulse_width |
test CDis
]z :out .
It is two old instructions. .
sb DisPulse ; Is a discharge pulse now ?
rout ; No. Go_home.

r
4
; m
YOIt is 77 nBw instructions, _13%.11.01, Thez have been included to_prevent of the influence of
; the pulse noise to give false disision about existing of the pulse discharge.

mov . work1,
:CheckDis . .
snb DisPulse . ; Is a discharge pulse now ?
jmp :ContinueDis
decsz workl
jmp :CheckDis
%mp . rout ; No. Go home.
:ContinueDis i i i i
decsz Cdis ; It is time to stop discharge pulse ?
jmp rout ; No. Go home.

clrb DisPulse ; Yes, stop discharge.
; mov Toption, #%11061000 ; disable interruption from RTCC.
‘out mov w, #cycles

retiw
; ¥rxxxxxxxxx END OF TIMER INTERRUPTION ****
—========== SESET ENTRY POINT ============

F%set_entry start ;Set page bits and then
star
clr rtcc, . . .
mov loption, #%11001000 ; disable interruption from RTCC.

; ========== Adjusting of the parameters - .
; All time termS are 1n the terms between the two RTCC interuptions.

mov divider, #1

mov ShiftCount, #1

mov Diswidth, #4 ;#10 1 #4
mov ADDelay, #2 :#8 B2
mov ADwidt #1

OneTwoPUlses, #1

mov
R R R R R I I L R R R R I,

,=========== Set B Port options
$F ;

direction.

mov Irb, #%10100001 , .B._Port directions, 0=0UT 1=IN.
mode $A ; rising edﬁes_ . .
mog égb, #$00 ; at the HeNe input pin and all other pins.
mode
mov 'rb, #$00 ; clearing the pending register.
mode D ; level
mov I'rb, #%FF , TTL
mog gg, #$00 ; B Port low levels
mode
'r #%11111111 ; disable interrupts from port B,

ins should deCrease of an influence of the noise.

mov . b,
; Next two instructo S :
; Schmitt triggers (0)
b, #%010111160
t1i
b

mode

ons may be not nessesary.

uc
$C
mov . 'r
; Next two instruc
mode %E

r

#%01111111 enable Qullug*ggg}§gg£

* % % %

mov
kkkkkkkhkkkkkkkkkkhkkkxk* %

clr . IsNoisePulse
; Next block is inserted on 25.10.01
,=========== Waltln% for the command _from PC that ============= .
H Next cycle wait for the start of C++ program which must send hlgh level ==========
;=== signal” on the ADready pin. The C++ program do it with function AD_Out_Aux(1). ====

:what_does_AD_do . .
sb ADready ; The chip can go out from this cycle when
jmp . :what_does_AD_do ; PC _program put 1 at ADready plin with AD_Out_Aux(1).
; Next two instructions are nessery if a next version of this’ program will
; use the interuptions from the b port. But they are kept in this version.

mode
mov 'rb #300 ; clearing the Qending register.
*****************4*** **************** EEE R R R R R TR TR T
4
,=========== Waiting for the beginning of the forward scan ====
‘not_shifted_scan
; mov ShiftCount, #1

! snb ADready ; Has AD work been finished ? If C++ program is finished
then SX go to sleep.

FrhkkXrxkxxx

jmg :Shifted_scan
mode
mov 'rb, #%11111110 ; enable interruption on rb.0 pin. In_the future
; 8X wakes up from rb.0 51gnal wich will send by
p 9 ; the "out(1)" button in C+¥+ program.
mode
mgv I'rb, #%$00 ; clearing the pending register.
slee
:shiftedEscan
mov loption, #%11001000 ., disable interruption from RTCC.
clrb DisPulse , Stop discharge.

mode $9
; This cycle detects the start of the scan by occuring 1 in the pending bit
; corresponding to the SCAN, This method can be implemented because
; at the thime of the begining of the scan there 1s no discharge and, as
H % cgnsequence, no pulsé noise.
:start_scan

clr w

mov 'rb w ; swapping and clearing of the pending bits.

and W, #%10000000 ' Pping g P g

jz :start_scan

seth UsedScan ; germition for AD to take data. 25.10.01
; This signal triggers AD combata.

Another realization of the above part_of the program. .
It employ a checking of the hlgh evel of the SCAN bit instead of
n

checklng the corresgondlng ending bit,
ERE R R R R R R R R R R RS AR EE LS EEE SRS EEEEEEEEE R R EEEEEE RS
:start_scan

sb SCAN

]mg :start_scan

Setb n

. UsedSca ; permition_for AD to take data. 25.10.01
=========== Skip ShiftCount pulses_of HeNe laser =============
This realization does not work well. The problems in SX chip. It does not work correctly.

mov work1,ShiftCount
. mode $9 . . .
:sklgfgulses ; sk;g_HeNe pulses ShiftCount times.
twait_ orIpulse ; waiting for the next HeNe pulse.
cIr w
mov 'rb, w ; swapping and clearing of the pending bits.
and W, ' #%00100000 pp1ng 9 P 9
jz :wait_for_pulse
decsz work1
jmp :skip_pulses
Another realization of the above part of the program
mov wWorkl, ; experiment.
mov Workl, #24 ; experiment.

_mov wWorkl, ShiftCount . .
:sklﬁ_ﬁulses ; skip HeNe pulses ShiftCount times.
thig 7beNe

sn

j HﬁNeh HeN
m thi eNe
:lowngNe 9h-

sb HeNe
jmp :low_HeNe
decsz workd

Jmp :SklE Eulses
IR R R A RS RS R R R R R R R R AR EE SRS R RS RS EEEE R EEREEEEREEEEEEEEESES

,=========== Timer enable
:fire_discharge
clr rt

C. ; clear timer.
mov loption, #%10001000 1.8 able interruption from RTCC.
. ERE R R R EEE R EE R EEEEEEEERE SRS EEREEEEERNEEE SRR R EREES EREEEE R RN E S LS
‘=========== Fire discharge pulse
mov SkipCount, divider .
test OneTwoPulses ; 1f zero then a noise pulse is not needed.
jnz :n01sgulse . . .
mov rb, %01000100 ; setting only the DisPulse bit
. K ; and leaving UsedScan at high level.
m 10
:n01%pﬁlse
mov rb, #%010101060 ,; setting the DisPulse bit and a "noise" AdPulse
. ; and leaving UsedScan at high level.
K mov IsNoisePulse, #1 ; "nolse" pulse start
o]
mov Cdis, Diswidth
inc Cdis
mov Cdel, ADDelay
inc C .
mov CADw, ADWidth
inc CADw
clr ADpulsewas o
mov rtcc, #$FE initialization of the timer to_quickly start the forming

f AD pulse. The number #$FE results rtcc _interuption after

; next two 1nstruct10n_c¥cles. And therefore a counting of

; the all delays and widths starts almost immediately after

; begining of the discharge pulse (in the interuption
*****************************4*9&99999&9;********************

,=========== Varification of a forward scan - -

:sklpEpulses_l SCAN ; skip HeNe pulses SkipCount times.

s

1m9 ;new
kkhkThkhkkhkkhkkkkhkkhkkkk*xF

scan_prep,; Torward scan is over. Go to prepare a new scan.
. EESECE Sk Sk R S S S T I R I S O S R S R I T R

=========== Waiting for the next HeNe pulse ===z

; It should be noted that, first ivider=1_means no SklEplng of the HeNe pulses
and, second, at the moméent of the start of the bellow loop to count skipped
HeNe pulses the discharge has already burned.

; This realization of the skipping of the HeNe pulses does not
; work because pending bits in B port are loos in the interruption

routine

; . mode $9 o

;twait_for_pulse_1 ; waiting for the next HeNe pulse.
mov 'rb, w ; swapping and clearing of the pending bits.
and W, #%00100000
jz :wait_for_pulse_ 1
decsz SkipCount
jmp :skip_pulses_1 .
Imp :fire_discharge ; a needed_number of HeNe pulses is skipped so let_us

; 1lmmediatly fire discharge at the present HeNe pulse.

; Another realization of the above part of the program which
'hprgduces the skipping of a needed number of HeNe pulses.
19

r
r
’
r
r
’
r
r
’
r
r
H clr w
I
r
’
r
r
’
r
r
’
r

snb HeNe
jmp :high
low
sb HeNe
jmp s low
decsz SkipCount
jmp :skip_pulses_1 .
Imp :fire_discharge ; a need u f ulses is skipped so let_us

eded_number of HeNe puls
immediatly fire discharge at the present HeNe pulse.
R R R R A T khkkkhkkkkkk*k kX *k**x*%x

i=========== Ppreparation to next scan
‘new_scan_prep . . .
mov égptlon, #%11001000 ; disable interruption from RTCC.

* *

mode
mov 'rb, #0 ; clearing_the Eending bits. They could contain the old data.
mov rb,” #%00000000 ; stop all pulses,
; clrb UsedScan ; prohibition for AD to take data. 25.10.01
H clrb DisPulse , stop discharge pulse.
H clrb ADPulse ; stop AD pulse.
; inc ShiftCount
; cja ShiftCount,divider, :not_shifted_scan
; . jmp :shifted_scan
jmp :not_shifted_scan
R IR R R R S S S S S SR S S SR R SRR SRR SRR SR R Sk kS kR R R R R Rk Sk Rk R S

éend

