
Управляющая программа для микрокомпьютера SX-28 для экспериментов с
импульсным разрядом.

; ==
; Author: Oleg Baskakov
; PRODUCING OF THE DISCHARGE PULSES AND PULSES FOR AD COMBATA.
; For every discharge palse two pulses for AD combata are produced.
; First at the same time when discharge pulse and second one is shifted.
; Useful pulse is a second pulse. But because there is a noise pulse
; at the time of the begining of discharge which causes acidental runing of AD combata
; we force this pulse of noise by another pulse. These false data
; counting by AD combata will be removed by the C++ program which will processed
; data. It is much more easy way than strugle against nois pulses.
; ==
; ======= Assembler directives ========
; uses: SX28AC, 2 pages of program memory, 8 banks of RAM, high speed osc.
; operating in turbo mode, with 8-level stack & extended option reg.
 DEVICE SX28L,OSCXTMAX
 DEVICE turbo,stackx_optionx
 ID 'SX_Disch' ;program ID label
 FREQ 50000000
; ======= RESET ========
 RESET reset_entry ;set reset/boot address. Input point of the program.
; **********************
 SCAN equ rb.7 ; Input, scan signal. High level for the forward scan,
 ; low level for the back scan.
 DisPulse equ rb.6 ; Output, to fire a discharge pulse. These pulses occur after dividing of
the
 ; frequency of HeNe laser and expanded in time.
 HeNe equ rb.5 ; Input, HeNe laser. This pin is used for the detection of the edge
interruption.
 ADPulse equ rb.4 ; Output, pulses for AD combata shifted in time with respect to the
 ; discharge pulses.
 UsedScan equ rb.2 ; Output, SCAN signal to AD. It is needed for the sinchronization of the
 ; performance of AD and Sx-chip.
 ; Now it is a trigger for AD combata and signal to handle PC program.
 ; It is used instead of SCAN line because from on this pin a much less
 ; pulse noise than on SCAN pin.
; UsedScan output is not used because after 25.10.01 something happened with electronics and SX chip could
not
; drive AD with this signal. This signal was replaced by scan signal in the electic curcits.
 ADready equ rb.0 ; Input, waiting for the start of AD.
 cycles equ -120 ; negative number, which determine the time in SX cycles between next
 ; RTCC interuption.
 org 8
 divider ds 1 ; the DisPulses occur with a 1:divider ratio of HeNe frquency.
 ShiftCount ds 1 ; number of the HeNe pulses to be skipped after beginning of the forward
scan
 ; to fire the first discharge pulse. It is a ring counter which takes a
value in
 ; the range 0 < ShCount < divider-1.
 SkipCount ds 1 ; number of the HeNe pulses between two next discharge pulses.
 ; It is a ring counter which takes a value in the range 0 < ShCount <
divider-1.
 Cdis ds 1 ; counter responsible for the width of the discharge pulse.
 DisWidth ds 1 ; width of the discharge pulse.
 Cdel ds 1 ; counter responsible for the delay of the AD pulse relative to the start
of the
 ; discharge pulse.
 ADDelay ds 1 ; delay of the AD pulse.
 CADw ds 1 ; counter responsible for the width of the AD pulse.
 ADWidth ds 1 ; width of the AD pulse.
 ADpulsewas ds 1 ; flag which determines either or not the AD pulse was at the current
discharge cycle.
 ; =0 if it was not yet.
 Work1 ds 1
 IsNoisePulse ds 1 ; =1 if there is a first, "noise" pulse for AD combata.
 OneTwoPulses ds 1 ; =1 - two pulses, =0 - one pulse (without "noise" pulse).

; =========== TIMER INTERRUPTION ===========
 org 0 ; It must always start at address of the interruption.
; This routine is responsible for the pulse widths and for the starting of the AD shifted pulses.
 snb ADPulse ; is there AD pulse now ? AD pulse can be "noise" or
 ; useful.
 jmp :AD_pulse_width ; Yes. AD pulse exists. Go to manage the pulse widthes.
 snb ADpulsewas.0 ; Was AD pulse already earlier ?
 jmp :Dis_pulse_width ; Yes. So let us work with discharge pulse.
 decsz CDel ; No. AD pulse is not yet started.
 ; So, we must make delay of the AD start.
 jmp :Dis_pulse_width ; It is not time to start AD pulse. So let us continue
 ; to work with discharge pulse.
 setb ADPulse ; Is it time to start AD.
 setb ADpulsewas.0
 jmp :Dis_pulse_width ; OK with AD start. Go to discharge pulse.
:AD_pulse_width
 test IsNoisePulse ; is it "noise" pulse ?
 jz :not_noise_pulse
 clrb ADPulse ; stop "noise" pulse.
 clr IsNoisePulse
 jmp :Dis_pulse_width ; Go to verify a discharge pulse.
:not_noise_pulse
 decsz CADw ; Is it time to stop AD pulse ?
 jmp :Dis_pulse_width ; No.
 clrb ADPulse ; Yes.
:Dis_pulse_width
 test CDis
 jz :out
; It is two old instructions.
; sb DisPulse ; Is a discharge pulse now ?
; jmp :out ; No. Go home.
; It is 7 new instructions. 13.11.01. They have been included to prevent of the influence of
; the pulse noise to give false disision about existing of the pulse discharge.
 mov Work1, #5
:CheckDis
 snb DisPulse ; Is a discharge pulse now ?
 jmp :ContinueDis
 decsz Work1
 jmp :CheckDis
 jmp :out ; No. Go home.
:ContinueDis
 decsz Cdis ; It is time to stop discharge pulse ?
 jmp :out ; No. Go home.

1

 clrb DisPulse ; Yes, stop discharge.
; mov !option, #%11001000 ; disable interruption from RTCC.
:out mov w, #cycles
 retiw
; *********** END OF TIMER INTERRUPTION ****
; =========== RESET ENTRY POINT ============
reset_entry PAGE start ;Set page bits and then
start
 clr rtcc
 mov !option, #%11001000 ; disable interruption from RTCC.
; ========== Adjusting of the parameters ======================
; All time terms are in the terms between the two RTCC interuptions.
 mov divider, #1
 mov ShiftCount, #1
 mov DisWidth, #4 ;#10 ;#4
 mov ADDelay, #2 ;#8 ;#2
 mov ADWidth, #1
 mov OneTwoPulses, #1
; ***
;=========== Set B Port options ===============================
 mode $F ; direction.
 mov !rb, #%10100001 ; B Port directions, 0=OUT 1=IN.
 mode $A ; rising edges
 mov !rb, #$00 ; at the HeNe input pin and all other pins.
 mode $9
 mov !rb, #$00 ; clearing the pending register.
 mode $D ; level
 mov !rb, #$FF ; TTL
 mov rb, #$00 ; B Port low levels
 mode $B
 mov !rb, #%11111111 ; disable interrupts from port B.
; Next two instructoins should decrease of an influence of the noise.
 mode $C ; Schmitt triggers (0).
 mov !rb, #%01011110
; Next two instructions may be not nessesary.
 mode $E
 mov !rb, #%01111111 ; enable pullup register for SCAN.
; ***
 clr IsNoisePulse
; Next block is inserted on 25.10.01
;=========== Waiting for the command from PC that =============
;=== Next cycle wait for the start of C++ program which must send high level ==========
;=== signal on the ADready pin. The C++ program do it with function AD_Out_Aux(1). ====
:what_does_AD_do
 sb ADready ; The chip can go out from this cycle when
 jmp :what_does_AD_do ; PC program put 1 at ADready pin with AD_Out_Aux(1).
; Next two instructions are nessery if a next version of this program will
; use the interuptions from the b port. But they are kept in this version.
 mode $9
 mov !rb, #$00 ; clearing the pending register.
; ***
;=========== Waiting for the beginning of the forward scan ====
:not_shifted_scan
; mov ShiftCount, #1
 snb ADready ; Has AD work been finished ? If C++ program is finished
 ; then SX go to sleep.
 jmp :shifted_scan
 mode $B
 mov !rb, #%11111110 ; enable interruption on rb.0 pin. In the future
 ; SX wakes up from rb.0 signal wich will send by
 ; the "out(1)" button in C++ program.
 mode $9
 mov !rb, #$00 ; clearing the pending register.
 sleep
:shifted_scan
 mov !option, #%11001000 ; disable interruption from RTCC.
 clrb DisPulse ; Stop discharge.
;==
 mode $9
; This cycle detects the start of the scan by occuring 1 in the pending bit
; corresponding to the SCAN. This method can be implemented because
; at the thime of the begining of the scan there is no discharge and, as
; a consequence, no pulse noise.
:start_scan
 clr w
 mov !rb, w ; swapping and clearing of the pending bits.
 and w, #%10000000
 jz :start_scan

 setb UsedScan ; permition for AD to take data. 25.10.01
 ; This signal triggers AD combata.
;--
; Another realization of the above part of the program.
; It employ a checking of the high level of the SCAN bit instead of
; checking the corresponding pending bit.
; ***
;:start_scan
; sb SCAN
; jmp :start_scan
; setb UsedScan ; permition for AD to take data. 25.10.01
;=========== Skip ShiftCount pulses of HeNe laser =============
; This realization does not work well. The problems in SX chip. It does not work correctly.
; mov Work1,ShiftCount
; mode $9
;:skip_pulses ; skip HeNe pulses ShiftCount times.
;:wait_for_pulse ; waiting for the next HeNe pulse.
; clr w
; mov !rb, w ; swapping and clearing of the pending bits.
; and w, #%00100000
; jz :wait_for_pulse
; decsz Work1
; jmp :skip_pulses
;--
; Another realization of the above part of the program
; mov Work1, #1 ; experiment.
; mov Work1, #24 ; experiment.

 mov Work1, ShiftCount
:skip_pulses ; skip HeNe pulses ShiftCount times.
:high_HeNe
 snb HeNe
 jmp :high_HeNe
:low_HeNe

2

 sb HeNe
 jmp :low_HeNe
 decsz Work1
 jmp :skip_pulses
; ***

;=========== Timer enable =====================================
:fire_discharge
 clr rtcc ; clear timer.
 mov !option, #%10001000 ; enable interruption from RTCC.
; ***
;=========== Fire discharge pulse =============================
 mov SkipCount, divider
 test OneTwoPulses ; if zero then a noise pulse is not needed.
 jnz :noispulse
 mov rb, #%01000100 ; setting only the DisPulse bit
 ; and leaving UsedScan at high level.
 jmp :ok
:noispulse
 mov rb, #%01010100 ; setting the DisPulse bit and a "noise" AdPulse
 ; and leaving UsedScan at high level.
 mov IsNoisePulse, #1 ; "noise" pulse start
:ok
 mov Cdis, DisWidth
 inc Cdis
 mov Cdel, ADDelay
 inc Cdel
 mov CADw, ADWidth
 inc CADw
 clr ADpulsewas
 mov rtcc, #$FE ; initialization of the timer to quickly start the forming
 ; AD pulse. The number #$FE results rtcc interuption after
 ; next two instruction cycles. And therefore a counting of
 ; the all delays and widths starts almost immediately after
 ; begining of the discharge pulse (in the interuption
 ; procedure.
; ***
;=========== Varification of a forward scan ===================
:skip_pulses_1 ; skip HeNe pulses SkipCount times.
 sb SCAN
 jmp :new_scan_prep ; forward scan is over. Go to prepare a new scan.
; ***
;=========== Waiting for the next HeNe pulse ==================
; It should be noted that, first, divider=1 means no skipping of the HeNe pulses
; and, second, at the moment of the start of the bellow loop to count skipped
; HeNe pulses the discharge has already burned.
;--
; This realization of the skipping of the HeNe pulses does not
; work because pending bits in B port are loos in the interruption
; routine
; mode $9
;:wait_for_pulse_1 ; waiting for the next HeNe pulse.
; clr w
; mov !rb, w ; swapping and clearing of the pending bits.
; and w, #%00100000
; jz :wait_for_pulse_1
; decsz SkipCount
; jmp :skip_pulses_1
; jmp :fire_discharge ; a needed number of HeNe pulses is skipped so let us
; ; immediatly fire discharge at the present HeNe pulse.
;--
; Another realization of the above part of the program which
; produces the skipping of a needed number of HeNe pulses.
:high
 snb HeNe
 jmp :high
:low
 sb HeNe
 jmp :low
 decsz SkipCount
 jmp :skip_pulses_1
 jmp :fire_discharge ; a needed number of HeNe pulses is skipped so let us
; ; immediatly fire discharge at the present HeNe pulse.
; ***
;=========== Preparation to next scan =========================
:new_scan_prep
 mov !option, #%11001000 ; disable interruption from RTCC.
 mode $9
 mov !rb, #0 ; clearing the pending bits. They could contain the old data.
 mov rb, #%00000000 ; stop all pulses.
; clrb UsedScan ; prohibition for AD to take data. 25.10.01
; clrb DisPulse ; stop discharge pulse.
; clrb ADPulse ; stop AD pulse.
; inc ShiftCount

; cja ShiftCount,divider,:not_shifted_scan
; jmp :shifted_scan
 jmp :not_shifted_scan
; ***
end

3

